-
The 1st Advanced materials for carbon neutrality in SKKU-KIST collaboration research 제1회 국제워크샵 개최
2022-10-07The 1st Advanced materials for carbon neutrality in SKKU-KIST collaboration research 제1회 국제워크샵 개최 지난 9월 29일 – 30일 양일간 ‘The 1st Advanced materials for carbon neutrality in SKKU-KIST collaboration research’을 주제로 강릉 KIST 연수원에서 국제워크샵을 개최했다. 이번 국제워크샵은 지난 3월 설립된 한국과학기술연구원과 우리대학간 연구 협력 프로그램인 KIST-SKKU 탄소중립 공동연구센터 설립을 기념하고 에너지 및 탄소중립 분야에서의 공동 연구협력 성과 발표 및 향후 융합연구 협력체계를 논의하고자 마련되었다. 워크샵에서는 박남규 SIEST 원장(SKKU), 정광덕 Ctx 사업단장(KIST)과 Zhong Lin Wang 교수(조지아텍), Seung-Woo Lee 교수(조지아텍), Mark C. Hersam 교수(노스웨스턴대학) , Bo Hou 교수(카디프대학), Katie H. Lim 박사(Los Alamos연구소), Sergei V. Kalinin 교수(테네시대학) 등 국내외 8분의 초청연사들의 발표와 함께 센터 소속 6분의 발표와 질의응답으로 진행되었다.
신소재공학과 최재영 교수 및 연구팀, 열에너지 저장을 위한 Ultrahigh-Porosity MgO Microparticles 개발
2022-09-19신소재공학과 최재영 교수 및 아주대학교 류학기 교수 연구팀, 열에너지 저장을 위한 Ultrahigh-Porosity MgO Microparticles 개발 성균관대학교 신소재 공학과 최재영 교수 및 아주대학교 첨단신소재 공학과 류학기 교수 연구팀은 열 에너지 저장을 위한 우수한 저장 효율 및 구조적 안정성을 갖는 Ultrahigh-Porosity MgO Microparticles을 개발하였다. 최재영 교수는 현재 C&C Materials 공동대표를 역임 중이다. 본 연구 결과는 재료공학분야의 세계적인 학술지인 Advanced Materials에 "Ultrahigh-Porosity MgO Microparticles for Heat-Energy Storage"을 게재하였다. 전세계적으로 탄소중립을 이루기 위한 신재생 에너지 보급 확대 움직임과 함께, 버려지는 열에너지를 회수해 활용가능한 에너지로 변환하는 연구가 초미의 관심사로 떠오르고 있다. 그 중에서도 필연적으로 발생하는 산업 폐열을 화학적 에너지로 저장하는 연구가 주목받고 있으며, 열에너지 저장 효율을 향상시키기 위한 소재 개발의 필요성은 증가하고 있다. 그림. Ultrahigh-Porosity MgO Microparticles의 모식도 및 구조 이미지 이에 연구팀은 폐열의 저장 용도로 주목받고 있는 산화마그네슘(MgO)에 초다공성 구조를 도입하여 우수한 열에너지 저장 성능을 갖는 소재를 개발하였다. 본 연구로 개발된 초다공성 MgO는 상용 MgO 대비 4배 높은 표면적을 갖기 때문에 열에너지 저장 과정에서 부피 팽창 문제가 발생하지 않아 구조적 안정성이 향상되었으며, 열 저장률이 상용 MgO 대비 7.2배 개선되었다. 본 연구를 통해 개발한 초다공성 MgO는 산업 폐열을 화학적 에너지로 저장하는데 있어 핵심적인 소재로서의 역할을 할 것으로 기대되며, 본 연구팀은 향후 새로운 물질의 합성 및 기존 물질의 구조적 제어를 통해 다양한 응용 분야에서 나노 재료의 한계점을 해결하는 후속 연구를 진행할 계획이다. 기초연구지원사업(중견연구), 기초연구실 지원으로 수행된 이번 연구는 재료과학(Materials science) 분야 상위 3% 이내의 세계적인 학술지인 “Advanced Materials (IF =32.086)”에 2022년 7월 게재되었다. ※ 논문명: Ultrahigh-Porosity MgO Microparticles for Heat-Energy Storage ※ 저자명: 김영호1, Dong Xue1, 채수동1, Ghulam Asghar, 최성웅, 김범준#, 최재영#, 류학기# ※ 관련링크: https://doi.org/10.1002/adma.202204775 1 : 주저자 # : 교신저자
신소재공학부 하마드코티바 교수 연구 그룹 '마그네슘 기반 소재의 연성-취성 특성의 이해와 인공지능의 활용' 발표
2022-08-16Mg 기반 소재의 연성-취성 행동(ductile-brittle behavior)을 이해하고 특징(특성)하는 인공지능 6월 11일, 신소재공학부의 Kotiba Hamad 교수가 이끄는 연구팀은 Clarivate’s Journal Citation Reports’ (JCR) 따른 금속공학 부문에서 1위에 해당하는 " Magnesium and Alloys (IF =11.8)"에 " Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning"을 발표했다. 이 연구는 재료 발견 및 설계 분야에서 AI 기술의 적용 가능성과 잠재력을 조사하기 위해, 연구팀이 수행한 작업 중 하나이다. 본 연구의 결과는 AI의 기술인 머신러닝을 통해 마그네슘 기반 합금에서 형성되는 금속간 화합물의 연성-취성(brittle-ductile) 특성이 안정적이고 정확하며 빠르게 예측된다는 것을 보여주었다. 머신러닝 결과는 아래 그림과 같이 밀도범함수 이론(density functional theory)을 이용한 이론적 계산에 통해 검증되었다. 이러한 결과는 구조적 적용을 위한 고성능 마그네슘 합금의 설계를 용이하게 할 수 있다. 이는 컴퓨터의 능력의 증가로 인해 인공지능의 하위 범주인 머신러닝이 기존 실험이나 심지어 물리 기반 모델링 및 시뮬레이션보다 훨씬 빠른 데이터 기반 모델을 구축하는 능력으로 재료 발견 및 설계 분야에서 크게 활용되고 있다고 말했다. 현재의 연구 그룹인 Kotiba Hamad (Professor), Russlan Jaafreh (PhD candidate), 강유성 (Graduate collaborator/Currently working in ‘Computer Systems and Intelligence Laboratory’), Santiago Pereznieto (Masters Student)는 재료 과학과 공학 분야에서 AI의 능력을 활용하고 있으며, 이 주제에 관한 여러 논문을 ACS Applied materials & interfaces, Journal of Materiomics와 같은 고급 학술지에 발표했다. 관련된 링크: - Russlan Jaafreh, Yoo Seong Kang, Kotiba Hamad, Journal of Magnesium and Alloys 2022, DOI: doi.org/10.1016/j.jma.2022.05.006. - Russlan Jaafreh, Yoo Seong Kang, and Kotiba Hamad, ACS Applied Materials & Interfaces 2021 13 (48), 57204-57213, DOI: doi.org/10.1021/acsami.1c17378 - Professor Kotiba’s Website: kotibahamad995.wixsite.com/aem-skku
신소재공학부 김윤석 교수 이온빔 활용 차세대 반도체 소재 고성능화 최초 구현해 사이언스지에 발표
2022-05-30김윤석(신소재공학과), 김영민(에너지과학과) 교수, 이온빔 활용 차세대 반도체 소재 고성능화 최초 구현해 사이언스지에 발표 - 반도체 소자의 초고집적화를 위한 응용 가능성 열어- [사진]김윤석 교수 신소재공학과 김윤석 교수 및 에너지과학과 김영민 교수 연구팀[공동교신저자 허진성 박사(삼성전자 종합기술원), Sergei Kalinin 박사(미국 오크리지 국립연구소)이 차세대 반도체 소재로 주목받고 있는 하프늄옥사이드(HfO2)에 ‘이온빔’을 이용해서 강유전성을 획기적으로 향상시킬 수 있는 방법을 세계 최초로 구현했다. 과기정통부 개인기초연구사업(중견연구, 기본연구) 등의 지원으로 수행된 이번 연구 성과는 국제학술지인 사이언스(Science)에 5월 13일 게재되었다. 강유전성이란 외부 자기장 등에 의해 물체의 일부가 양(+)극이나 음(-)극을 띠게 된 후 그 성질을 유지하게 되는 성질을 말하며, 강유전성이 크면 메모리에서 데이터를 저장하는 기본구조인 ‘0’과 ‘1’의 차이가 커져 저장된 데이터를 보다 정확하게 읽을 수 있게 된다. 이러한 강유전성을 지니는 물질을 사용할 경우, 나노미터의 매우 얇은 막 상태에서도 우수한 강유전성을 통해 반도체 소자의 집적도를 높일 수 있다는 아이디어가 이미 40여 년 전에 제안되었으나, 최근 새로 도입된 소재인 하프늄옥사이드에서도 강유전성 증대를 위한 후처리과정이 추가로 필요하고 여러 공정 조건들이 강유전성에 큰 영향을 미치는 등 실제 적용에는 공정상 큰 한계점이 있어 실제로 구현되지는 못했었다. 이에 연구팀은 후처리과정이나 복잡한 공정최적화 과정 없이, ‘이온빔’이라는 하나의 변수만으로 하프늄옥사이드의 강유전성을 손쉽게 조절하고 획기적으로 향상시킬 수 있는 방법을 제시하였다. 강유전성의 발현 정도는 산소 공공(산화물 재료의 결정구조에서 산소 원자가 빠져 비어있는 자리)과 밀접한 관계가 있다고 알려져 왔으며, 연구팀은 이에 착안하여 이온빔을 이용한 산소 공공의 정량적 조절을 통해 강유전성을 향상시키는 방법을 고안하였다. 연구팀은 이온빔을 적용한 결과, 강유전성의 증가 원인이 산소결함 밀도와 연계된 결정구조 변화에서 기인한다는 원리를 밝혀냈으며, 이온빔을 적용하지 않을 때보다 강유전성을 200% 이상 증가시킬 수 있었다. 김윤석 교수는 “이번 연구를 통해 강유전성을 활용한 고효율 반도체 소자의 실용화를 앞당길 수 있을 것으로 기대된다”며 “현재의 방법론적 연구 결과를 토대로 실제 반도체 산업에 적용하기 위해서는 최적 조건 탐색 등 후속 연구가 지속적으로 필요하다”고 말했다.