-
정현석 교수 연구팀, 고분자 가교 중합을 이용한 수분에도 안정한 고효율 페로브스카이트 태양전지 개발
2024-09-05[그림] 신소재공학부 정현석 교수 · Guo He 연구원 (왼쪽부터) 고분자 가교 중합을 이용한 수분에도 안정한 고효율 페로브스카이트 태양전지 개발 이 연구는 할라이드 페로브스카이트 박막의 입계 결함과 격자 변형 문제를 효과적으로 해결하여 상용화 가능성을 높인데 학술적 의의가 있다. 신소재공학부 및 성균에너지과학기술원 소속 정현석 교수가 이끄는 공동연구팀이 페로브스카이트-폴리머 복합체를 활용하여 고효율 및 고안정성 페로브스카이트 태양전지 구현에 성공했다고 밝혔다. 할라이드 페로브스카이트 박막은 기판과의 열팽창 계수 불일치에 의해 결정 성장 과정 중 격자 변형이 발생하고 박막 내 잔류 응력을 유발한다. 이는 이온 이동 활성화 에너지를 감소시켜 페로브스카이트 분해를 가속하는 문제가 있어 안정성 확보를 위해 관련 기술 개발이 요구되었다. 또한 할라이드 페로브스카이트 물질은 수분에 매우 취약하여 상용화를 위해 수분 안정성 확보 또한 지속적으로 요구되어 왔다. 이에 정현석 교수 연구팀은 이러한 고효율 태양전지의 상용화에 큰 장애물로 작용해 온 페로브스카이트의 불안정성을 극복할 수 있는 혁신적인 방법을 개발했다. 연구팀은 비정질 페로브스카이트 박막과 아크릴아미드(Acrylamide) 단량체에 빛을 조사하여 교차결합시켜 안정적이고 고효율의 페로브스카이트 태양전지를 제작했다. 이 방법은 박막 내에서 결정 성장 및 결정 간의 교차결합을 촉진시켜 페로브스카이트 박막의 안정성을 크게 향상시켰다. 특히, 아크릴아미드 단량체는 페로브스카이트 박막의 결정립 크기를 확장시키고, 결정의 선호 방향성을 유도하며, 교차결합층은 페로브스카이트 박막을 수분에 의한 열화로부터 보호함을 밝혀냈다. 연구팀은 이번 연구를 통해 개발된 기술은 페로브스카이트 태양전지의 효율을 향상시킬 뿐만 아니라 장기적인 안정성을 확보하는 데 큰 성과를 거두었다고 밝혔다. 연구 결과에 따르면, 제안된 전략을 사용하여 제작된 소자는 24.45%의 전력 변환 효율(Power Conversion Efficiency)과 1.199 V의 개방 회로 전압(VOC, Open Circuit Voltage)을 달성했으며, 이는 TiO2로 구성된 전자 수송층(Electron Transport Layer)을 포함한 할라이드 페로브스카이트 태양전지 분야에서 보고된 최고 VOC이다. 또한 고습 환경에서의 높은 안정성(700시간 후 초기 성능의 80% 유지) 및 광안정성(1,008시간 후 초기 성능의 80% 유지)를 확인했다. 페로브스카이트 박막 내 압력 결함 제어 및 고결정 페로브스카이트 박막 형성 과정 추가적으로, 연구팀은 제안된 전략을 활용하여 대면적 PSC 모듈을 제작했으며, 이 모듈은 33cm²의 활성 면적에서 77.1%의 높은 필팩터(Fill factor), 20.31%의 전력 변환 효율과 뛰어난 저장 안정성을 보여 대면적 소자로의 확장 가능성 또한 입증했다. 이 연구는 할라이드 페로브스카이트 박막의 입계 결함과 격자 변형 문제를 효과적으로 해결하여 상용화 가능성을 높인데 학술적 의의가 있다. 정현석 교수는 "아크릴아미드 단량체를 사용한 새로운 접근법이 격자 변형을 완화하고 페로브스카이트 박막의 결정 성장을 제어하여 고품질 박막을 생산할 수 있으며 박막의 소수성 특성을 확보하여 할라이드 페로브스카이트 소재의 오랜 문제인 수분 안정성에 대한 문제를 해결하는 등 상용화에 기여할 수 있는 기술로 기대된다."고 설명했다. 본 연구 성과는 에너지, 연료(Energy&Fuels) 분야 상위 3% 국제 학술지 ‘어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)에 표지 논문으로 2024년 1월 5일에 게재되었다. ※ 저널명: Advanced Energy Materials ※ 논문명: In Situ Polymerization of Cross-Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells ※ DOI: 10.1002/aenm.202302743 ※ 저자 - 교신저자: 정현석 교수(성균관대학교 신소재공학부 / 성균에너지과학기술원), 한길상(한국화학연구원) - 제1저자: Guo He(성균관대학교 신소재공학과 박사과정) - 공동저자: 윤건우(성균관대학교 신소재공학과 석박통합과정), Zi Jia Li(China New Energy R&D Center), 윤영훈 박사, 이상욱 교수(이하 경북대학교 신소재공학부), 서유현 박사, 전남중 선임연구원(이하 한국화학연구원)
조형균 교수 연구팀, 탄소중립 달성을 위한 이산화탄소 분해기술 개발
2024-05-17[그림] 김동수 박사, 오신영 연구원, 이학현 연구원 (왼쪽부터) 이산화탄소 분해해 재활용 가능한 신재생 에너지원 생산에너지 분야 국제학술지, 어드밴스드 에너지 머티리얼즈 3월호 표지논문 선정 성균관대(총장 유지범) 신소재공학부 조형균 교수 연구팀(김동수 박사, 오신영, 이학현 연구원)이 온실가스의 주범인 이산화탄소를 광전극과 나노입자 촉매 융합연구를 통하여 고부가가치 화합물로 제조할 수 있는 친환경 신재생 에너지 기술을 개발했다고 22일 밝혔다. 이산화탄소의 분해를 위해서는 외부로부터 많은 에너지가 요구되는데 광전기화학적 이산화탄소(CO2) 분해는 태양광을 활용하여 이산화탄소로부터 신재생 에너지원을 생성하는 기술로 친환경적인 미래 기술이다. 연구팀은 원자단위의 선택적 광환원 촉매 기술력을 반도체 광전극에 융합하여 장시간 안정성과 높은 광전류를 동시에 얻어 탄소중립 달성 및 이산화탄소 분해 상용화의 가능성을 확인하였다. 무한한 청정에너지인 태양광을 활용하여 이산화탄소 분해에 필요한 에너지를 최소화하며 동시에 95% 이상 일산화탄소로(CO) 전환하는 촉매 기술을 개발했다. 이는 현재까지 논문으로 보고된 수치 중 가장 높은 결과값이다. 대기 중 온실가스를 제거함과 동시에 미래 청정 에너지원으로 각광받고 있는 일산화탄소(CO), 에탄올(C2H6O), 메탄올(CH3OH), 개미산(HCOOH) 등의 합성에 필요한 이산화탄소 분해 반응은 탄소중립 달성을 위한 핵심 기술이지만 이산화탄소 분자는 화학적으로 높은 안정성을 지녀 유용한 화학 물질로의 전환은 여전히 큰 난제로 여겨지고 있다. 어드밴스드 에너지 머티리얼즈 3월호 표지. 연구팀이 개발한 광전기화학적 이산화탄소 전환 및 분해 기술은 태양광과 전기를 활용해 온실가스인 이산화탄소를 재활용 가능한 신재생 에너지원인 탄소화합물로 바꾸는 기술이다. 이 기술은 지구온난화를 일으키는 온실가스의 감축을 위한 수단으로 최근 많은 주목을 받고 있다. 또한, 일산화탄소는 초산, 플라스틱을 비롯한 다양한 화학물질을 생산할 수 있으며, 합성 연료유, 메탄올과 같은 대체에너지원을 생산하는 데 필요한 원료 물질이다. 이산화탄소 광전기화학적 전환은 광흡수층과 촉매의 결합이 중요하다. 광전기화학 전환에 높은 활성을 보이는 금, 백금, 은과 같은 귀금속 촉매는 전환 비용이 높아 기술적 비용 절감에 한계를 겪고 있다. 따라서, 기존 귀금속 촉매 물질에서 저비용 촉매로의 변화와 이산화탄소 전환 반응에 필요한 에너지원을 태양광으로 유도할 수 있는 적합한 반도체 광전극 및 시스템 개발이 필요한 실정이다. 연구팀은 저비용의 나노입자 구리(Cu) 촉매를 산화물 반도체(Cu2O) 흡수층으로부터 전기화학적 성장하여 촉매와 흡수층 사이 흡착력 증가 및 계면저항 감소에 대한 시너지 효과를 발생시켜 이산화탄소 분해에 사용되는 과전압을 줄임과 동시에 이산화탄소 분자를 보다 효과적으로 분해하여 95% 이상 일산화탄소로 전환하는 촉매 기술을 개발했다. 이에 연구팀은 산화구리(Cu2O) 흡수층의 본질적인 광환원 반응을 이용하여 제조된 나노입자 구리 촉매로 효율적인 이산화탄소 환원을 대면적, 저비용으로 가능하게 하는 혁신적인 2단계 촉매 생성 전략을 제안하였다. 이 접근법은 ▲물리적으로 밀도 높게 분산된 구리 나노입자의 성장과 ▲전기화학 구리 클러스터 촉매의 전기화학 결합으로 인하여 효과적으로 이산화탄소 분해를 달성하였다. 광흡수층(Cu2O)과 구리 촉매의 결합은 광부식 억제와 함께 0VRHE에서 -1.2mA/cm2의 광전류 성능을 보여주며 고순도 일산화탄소 생성물을 생성할 수 있다. 성균관대 조형균 교수 연구팀의 김동수 박사는 “무한한 태양광을 통해 지구온난화를 막아낼 이산화탄소 분해 촉매 형성의 새로운 발견이며, 고효율 이산화탄소 광전기화학 분해 연구의 초석이 될 것”이라며 “가장 시급한 글로벌 이슈인 탄소중립과 지속가능한 에너지원 발견에 기여할 것으로 기대된다”고 말했다. 본 연구는 과학기술정보통신부 “광전기화학반응의 이론적 한계를 초월한 신개념 소재/공정/구동 모델 연구(Design of novel material/process/operation capable of exceeding theoretical limitations of the photoelectrochemical reaction”(No.2021R1A2C3011870)의 지원을 받아 수행되었으며, 화학물리(CHEMISTRY, PHYSICAL) 분야 상위 3.09% 이내의 세계적인 학술지인 어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF: 27.8)에 지난 1월 9일 온라인 게재 및 3월호 표지를 장식했다. ※ 논문제목: Harmonized Physical and Electrochemical Process Design for Densely Dispersed Cu Catalysts on Cu2O Absorbers for Efficient Photoelectrochemical CO2 Reduction Reaction 출처 : Usline(유스라인)(http://www.usline.kr)
구종민 교수 연구팀, 전자파 흡수해 스텔스 기능 갖춘 맥신 소재 개발
2024-05-03전자파 흡수해 스텔스 기능 갖춘 맥신 소재 개발 개발된 맥신 나노소재가 저주파인 라디오파(RF)에서부터, X-band, 테라헤르츠, 적외선에 이르는 광범위한 주파수 영역에서 우수한 전자기파 차폐 및 흡수 성능을 가지는 소재임을 확인 신소재공학부 구종민 교수 신소재공학부 구종민 교수 연구팀은 스텔스* 국방 기술 및 고집적 통신/전자기기의 전자파 차폐 기술에 활용할 수 있는 맥신(MXene) 전자기파 흡수 소재를 개발했다고 4일 밝혔다. * 스텔스기술: 전자기파(波)를 흡수해 레이더 영상에 나타나지 않게 하는 기술로 레이더에 의한 항공기, 미사일의 조기 발견을 곤란케 하는 기술. 전자기파(electromagnetic wave)의 흡수 소재 개발은 레이더 탐지를 무력화하는 스텔스기술 및 통신/전자기기에서 발생하는 유해 전자파 차단·제거를 위해 꼭 필요한 기술로 많은 주목을 받고 있다. 현재 국내 스텔스 전투기 도료기술은 많은 부분을 해외에 의존하고 있어 이에 관한 연구와 개발이 필요하며 고집적 전자장치용 전자파 흡수 소재 개발을 위해서는 가볍고 얇으면서 코팅 가공성이 우수한 소재 기술 개발이 필요하다. 이에 구종민 교수 연구팀은 맥신(MXene) 이차원 나노소재와 ZIP(zeolitic imidazolate framework) 나노소재의 자기조립 구조체를 이용하여 효율적인 스텔스 성능과 전자파 흡수 특성을 가지는 소재를 개발하였다. 맥신 소재 (MXene)는 Ti(티타늄), V(바나듐), Mo(몰리브덴) 등과 같은 전이금속(M)과 질소 또는 산소 원소 (X)을 포함하는 전이금속탄화물 또는 질화물 (Mn+1Xn, n=1=4) 이차원 소재로 전기전도성이 매우 우수한 특성을 가진다. 또한 다량의 표면작용기가 존재하여 표면 음전하 특성을 보이는 나노소재이다. 반면 ZIP 나노소재는 CO2+와 같은 금속양이온과 2-methylimidazole(Hmim)와 같은 유기분자 음이온으로 형성된 3차원 나노소재이다. 연구팀은 유기분자구조를 조절하여 표면양전하를 띠는 ZIP 나노소재를 제조하였다. 연구팀은 맥신의 표면 음전하 특성과 ZIF 나노입자의 표면 양전하 특성을 이용해 정전기적인력(electrostatic interaction)에 의한 자기조립 하이브리드 나노구조 소재를 제작하였다. 이 소재는 각 나노소재의 상반된(음·양전하) 표면전하특성에 의해 이종계면(heterointeface)에서 매우 강한 내부 전기장(built-in electric field, BIEF)이 형성된다. 이 내부 전기장이 강한 유전손실을 유도하여 X-band (8-12 GHz) 주파수 영역*에서 2.5mm 두께의 스텔스 성능(반사손실 RL)을 보여주었고 47.5dB, 유효밴드범위가 6.3GHz인 우수한 전자파 흡수 성질 및 스텔스 성능을 가진다는 것을 밝혔다. 연구팀은 개발된 맥신 나노소재가 저주파인 라디오파(RF)에서부터, X-band, 테라헤르츠, 적외선에 이르는 광범위한 주파수 영역에서 우수한 전자기파 차폐 및 흡수 성능을 가지는 소재임을 확인하였다. 이를 활용하면 스텔스 응용뿐 아니라 통신/전자소자용 차폐 소재, 적외선 스텔스, 적외선 위조 방지 등 다양한 기술로 활용 가능하다. 구종민 교수는 “맥신 소재는 향후 국내 KF-21 스텔스 전투기 제작사업에서 스텔스 소재로 활용할 수 있으며 그 외에도 최첨단 고집적 전자소재 그리고 전기 자동차의 유해 전자파 흡수 소재로도 활용할 수 있을 것”이라고 설명했다. 과학기술정보통신부의 중견연구자사업, 나노및소재 사업, 출연연융합연구사업과 포스코(POSCO)의 지원을 받아 수행된 이번 연구의 성과는 Advanced Materials(IF: 29.4)와 Nature Reviews Electrical Engineering 저널에 동시에 온라인 게재되었다. 1. Zhenguo Gao, Aamir Iqbal, Tufail Hassan, Shengchong Hui, Hongjing Wu*, Chong Min Koo*, “Tailoring Built‐in Electric Field in a Self‐Assembled Zeolitic Imidazolate Framework/MXene Nanocomposites for Microwave Absorption”, Advanced Materials 2024, 2311411 (https://doi.org/10.1002/adma.202311411) 2. Aamir Iqbal, Tufail Hassan, Shabbir Madad Naqvi, Yury Gogotsi, Chong Min Koo*, "MXenes for multispectral electromagnetic shielding”, Nature Reviews Electrical Engineering 2024, 1, 180-198. [연구그림 1] 맥신(MXene) 이차원 나노소재 구조 및 라디오파에서 적외선에 이르는 광대역 주파수 범위에서 발현되는 우수한 전자파 차폐 효과 [연구그림 2] 맥신-ZIF 나노입자의 자기조립구조 및 형성된 하이브리드 구조의 내부전기장(BIEF) 형성 효과 [연구그림 3] 맥신-ZIF 하이브리드의 계면에 형성된 내부전기장(BIEF) 효과 및 BIEF효과에 의해 유도된 우수한 스텔스 성능
원병묵 교수 연구팀, 땀방울의 체온 유지 메커니즘 규명
2024-04-17땀방울의 체온 유지 메커니즘 규명 기후 위기에 맞서 건강 보건, 스포츠 과학, 일기 예보, 기능성 소재 개발 등에 활용될 것으로 기대 신소재공학부 원병묵 교수는 땀방울의 불완전 증발이 체감온도를 결정하는 '열지수 (Heat Index)'의 물리적 근원임을 최초로 규명했다고 밝혔다. 지구 온난화 때문에 덥고 습한 날이 많아지면서 유럽과 미국에서는 덥고 습한 날 사망하는 사례가 속출하고 있다. 기온과 습도에 따라 달라지는 체감온도는 ‘열지수 (Heat Index)’라는 값에 의해 결정된다. 열지수는 전 세계 거의 모든 국가에서 일기예보에 활용하고 있다. 가령, 습도가 70%이며 32°C인 날의 열지수는 41°C이다. 즉, 우리가 느끼는 체감온도는 41°C이다. 건조한 날에 비해 습한 날은 더 높은 체감온도를 경험한다. 아주 습하고 더운 날은 열지수가 높고 체온 유지가 어려워 생명이 위험할 수 있다. 하지만 열지수의 정확한 물리적 근원에 대해서는 알려진 바가 거의 없다. ‘습하고 무더운 날 체온 유지가 어렵다’ 정도만 알고 있을 뿐이다. 우리 몸은 땀을 방출하여 땀방울이 증발할 때 열을 내보내 체온을 유지한다. 체온 유지는 생명 유지에 중요한 작용으로서 일상 생활 또는 운동할 때와 같이 우리의 건강과 직결되어 있다. 이토록 땀을 흘리면 체온이 내려간다는 것은 잘 알려진 사실이지만, 기온과 습도에 따라 땀에 의한 체온 유지 메커니즘이 어떻게 열지수와 관련 있는지 정확하게 밝혀진 것이 없다. 원병묵 교수 연구팀은 땀방울이 순수한 물방울과 약 1% 염분 차이가 발생한다는 사실에 착안하여, 기온과 습도에 따른 땀방울 증발 현상을 정밀 관찰하였으며, 땀방울이 순수한 물방울과 달리, 무덥고 습한 조건에서 완전 증발이 되지 않고 일부의 물이 잔존하는 ‘불완전 증발’을 한다는 사실을 발견했다. 땀방울의 불완전 증발에 따른 열손실을 측정하여 습한 환경에서 땀방울의 불완전 증발이 높은 열지수의 물리적 근원이라는 사실을 최초로 입증했다. 낮은 습도에서는 땀방울이 완전히 증발하여 땀 침전물만을 남기는 반면, 높은 습도에서는 땀 침전물 뿐만 아니라 수분이 잔류하고 있다. 높은 습도에서는 땀 잔여물이 주위 공기에서 수분을 지속적으로 흡수하기 때문이다. 이러한 불완전 증발은 땀증발에 의한 열전달 효율을 감소시켜 열지수를 높이고 신체의 체온 조절 능력을 떨어뜨린다. 땀방울의 체온 유지 메커니즘에 대한 이해는 습하고 더운 날씨가 자주 등장하는 최근 기후 위기에 맞서, 인류의 건강 보건, 스포츠 과학, 일기 예보, 기능성 소재 개발 등에 매우 중요하게 활용될 수 있을 것으로 기대한다. 이번 연구 결과는 4월 16일 미국화학회가 발행하는 환경과학 분야 저명 학술지 ‘환경과학과 기술 (Environmental Science & Technology)’에 표지 논문으로 게재됐다. 이번 연구성과는 아모레퍼시픽의 연구비 지원을 통해 수행되었다. ※ 저널: Environmental Science & Technology (2024), Impact factor 11.4 (2022년 기준), JCR 환경과학 분야 상위 6.7% 저널 ※ 논문제목: Heat transfer by sweat droplet evaporation ※ DOI 10.1021/acs.est.4c00850 https://pubs.acs.org/doi/10.1021/acs.est.4c00850 ※ 공동 제1저자: Mohadese Beigtan 박사, Marta Gonçalves 박사 ※ 교신 저자: 원병묵 교수 (성균관대학교 신소재공학부) 땀방울의 불완전 증발이 열지수의 원인이라는 연구 결과 표지 논문, 4월 16일 출판 (좌) 원병묵 교수 (중) Mohadese Beigtan 박사 (우) Marta Gonçalves 박사